Characterisation of Strongly Normalising lambda-mu-Terms
نویسندگان
چکیده
منابع مشابه
Characterisation of Strongly Normalising lambda-mu-Terms
We provide a characterisation of strongly normalising terms of the λμ-calculus by means of a type system with intersection and product types. The presence of the latter and a restricted use of the type ω enable us to represent the particular notion of continuation used in the literature for the definition of semantics for the λμ-calculus. This makes it possible to lift the well-known characteri...
متن کاملCharacterising Strongly Normalising Intuitionistic Terms
This paper gives a characterisation, via intersection types, of the strongly normalising proof-terms of an intuitionistic sequent calculus (where LJ easily embeds). The soundness of the typing system is reduced to that of a well known typing system with intersection types for the ordinary λ-calculus. The completeness of the typing system is obtained from subject expansion at root position. Next...
متن کاملCharacterising Strongly Normalising Intuitionistic Sequent Terms
This paper gives a characterisation, via intersection types, of the strongly normalising terms of an intuitionistic sequent calculus (where LJ easily embeds). The soundness of the typing system is reduced to that of a well known typing system with intersection types for the ordinary λ-calculus. The completeness of the typing system is obtained from subject expansion at root position. This paper...
متن کاملAsymptotically almost all \lambda-terms are strongly normalizing
We present quantitative analysis of various (syntactic and behavioral) properties of random λ-terms. Our main results are that asymptotically all the terms are strongly normalizing and that any fixed closed term almost never appears in a random term. Surprisingly, in combinatory logic (the translation of the λ-calculus into combinators) the result is exactly opposite. We show that almost all te...
متن کاملComplexity of Strongly Normalising λ-Terms via Non-idempotent Intersection Types
We present a typing system for the λ-calculus, with non-idempotent intersection types. As it is the case in (some) systems with idempotent intersections, a λ-term is typable if and only if it is strongly normalising. Nonidempotency brings some further information into typing trees, such as a bound on the longest β-reduction sequence reducing a term to its normal form. We actually present these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science
سال: 2013
ISSN: 2075-2180
DOI: 10.4204/eptcs.121.1